Further results on multiple coverings of the farthest-off points
نویسندگان
چکیده
منابع مشابه
Further results on multiple coverings of the farthest-off points
Multiple coverings of the farthest-off points ((R,μ)-MCF codes) and the corresponding (ρ, μ)-saturating sets in projective spaces PG(N, q) are considered. We propose some methods which allow us to obtain new small (1, μ)-saturating sets and short (2, μ)-MCF codes with μ-density either equal to 1 (optimal saturating sets and almost perfect MCF-codes) or close to 1 (roughly 1+1/cq, c ≥ 1). In par...
متن کاملA note on multiple coverings of the farthest-off points
In this work we summarize some recent results, to be included in a forthcoming paper [1]. We define μ-density as a characteristic of quality for the kind of coverings codes called multiple coverings of the farthest-off points (MCF). A concept of multiple saturating sets ((ρ, μ)-saturating sets) in projective spaces PG(N, q) is introduced. A fundamental relationship of these sets with MCF is sho...
متن کاملMultiple coverings of the farthest-off points and multiple saturating sets in projective spaces
For the kind of coverings codes called multiple coverings of the farthestoff points (MCF) we define μ-density as a characteristic of quality. A concept of multiple saturating sets ((ρ, μ)-saturating sets) in projective spaces PG(N, q) is introduced. A fundamental relationship of these sets with MCF codes is showed. Lower and upper bounds for the smallest possible cardinality of (1, μ)-saturatin...
متن کاملMultiple coverings of the farthest-off points with small density from projective geometry
In this paper we deal with the special class of covering codes consisting of multiple coverings of the farthest-off points (MCF). In order to measure the quality of an MCF code, we use a natural extension of the notion of density for ordinary covering codes, that is the μ-density for MCF codes; a generalization of the length function for linear covering codes is also introduced. Our main result...
متن کاملSome Results on Farthest Points in 2-normed Spaces
In this paper, we consider the problem of the farthest poinst for bounded sets in a real 2-normed spaces. We investigate some properties of farthest points in the setting of 2-normalised spaces and present various characterizations of b-farthest point of elements by bounded sets in terms of b-linear functional. We also provide some applications of farthest points in the setting of 2inner produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics of Communications
سال: 2016
ISSN: 1930-5346
DOI: 10.3934/amc.2016030